MEMS for FSO beam forming and steering

P.-A. Blanche

http://www.optics.arizona.edu/pablanche/

How it is done Computer Generated Hologram

Diffraction

Gershberg-Saxon algorithm

Same as phase array radar

P.-A. Blanche, "Field Guide to Holography", SPIE press book, FG31, January 2014.

How it works Cross connect schematic

How it looks like Switch Prototype for data center

DLP Fourier lens Fibers out Fibers in

Collaboration with Microsoft research

Ghobadi, Monia, et al. "Projector: Agile reconfigurable data center interconnect." Proceedings of the 2016 conference on ACM SIGCOMM 2016 Conference. ACM, 2016.

B. Lynn et al. "Design and Preliminary Implementation of an N×N Diffractive All-optical Fiber Optic Switch", IEEE/OSA Journal of Lightwave Technology, 31 (24), pp 4016 – 4021, December 2013.

What can it do? Advantages for FSO networks

- **Speed:** 12 μ s reconfiguration time
- \rightarrow Real time reconfiguration
- \rightarrow Tracking of moving vehicle

Beam shaping: (Fresnel lens)

- \rightarrow Atmospheric correction
- \rightarrow Orbital angular momentum multiplexing

Beam splitting:

- \rightarrow Spatial multiplexing: 10,000 output ports
- \rightarrow Signal optimization for \neq users

Where can I buy one? Phase MEMS prototype

Faster than LCOS, more efficient than DMD! $(120Hz \rightarrow 20 \text{ kHz})$ $(40\% \rightarrow 100\%)$

Collaboration with UC Berkeley and Texas Instruments

P.-A. Blanche et al., "Diffraction-Based Optical Switching with MEMS", MDPI Applied Sciences, 7(4), 411 (2017).