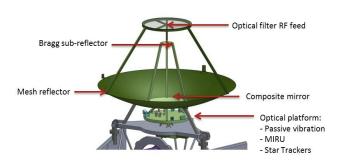


Towards Interference-free Wireless Networks: the Role of FSO

Harsha Chenji


School of Electrical Engineering and Computer Science,
Ohio University, Athens, Ohio

chenji@ohio.edu

My Interest in FSO

- 1. Assistant Professor since 2015
 - □ Ph.D./M.S. work on RF Wireless Systems
- 2. June 2015: visit to NASA Glenn (Cleveland, Ohio)
 - □ Tele-tenna (iROC), LLCD/LADEE (622 Mbps FSO)

Source: "FALCON Fast, Far, and First", Wright-Patterson Air Force Base

3. That trip led me to

National Science Foundation (NSF) #1657279: "CRII: NeTS OP: A Software Defined Approach to Laser-based Free Space Optical Networks". \$175K (2017-2019). Single PI.

REU Supplement: \$16,000 (2017)

Leveraging RF in FSO and vice-versa

- 1. <u>Highly directional networks</u>: interference-free?
 - Gupta-Kumar limit for directional networks is inversely proportional to sqrt(beamwidth)
 - □ FSO networks with micro radian beamwidth are possible
- 2. Are MAC protocols a subset of PAT techniques?
 - Pointing, Acquisition and Tracking (PAT) is field proven
 - Omnidirectional antennas considered harmful?

- 3. Adaptive beam shaping in RF/mmWave/THz?
 - □ Beam splitting, expanding, shaping, steering
 - □ Lightweight diffractive optical elements?

Applications of FSO Networks

- 1. Ultra-low latency networks: NSF Workshops' Report
 - MAC layer contributes 25ms
 - □ Eliminate MAC and instead, point once and track
- 2. Disaster response: high capacity back/front haul
 - Facebook's tether-tenna
- 3. Security low probability of interception/detection
 - ☐ Get around obstacles with multi-hop!
- 4. FSO too can sense! LIDAR for localization?
- 5. Visible light comms: cheap phased arrays (cameras)

Research (Grand) Challenges?

- 1. Micro/nano second PAT times with urad beamwidth
 - Orders of magnitude less than WiFi DIFS
 - Allows ultrafast realignment and tracking
 - May require non-mechanical steering mechanisms
- 2. Multi-receiver/multi-node PAT
 - ☐ Point a split beam at multiple mobile receivers
- 3. Software-defined optical radios/frontends
 - With coherent communication?
 - May not need high bandwidth at ultra high SNRs
- 4. Leverage quantum optics?

Immediate and Short-term Needs

- 1. Outreach and clearing misconceptions
 - □ FSO and RF/mmWave/THz are all neighbors on the spectrum
 - AIAA, SPIE, OSA, not just IEEE and ACM
- 2. Publication venues are needed!
 - Frequently mentioned at IWCMC 2017 WON symposium
- 3. Inexpensive experimentation platforms
 - ☐ Koruza: open source hw/sw
 - □ "deployable" form factors ideal for SBIRs/STTRs
- 4. FSO testbeds with mobility
 - NASA SCaN testbed + optics?
 - □ AFRL/RI @ Rome: AOptix terminals, 20+ km link
 - □ NSF PAWR?