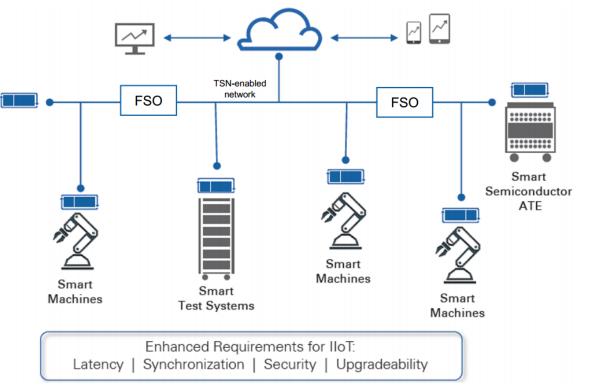
Optical Free Space in **Time-Sensitive Networks**

Andrea Fumagalli The University of Texas at Dallas The University of Kansan andreaf@utdallas.edu

Ron Hui hui@ittc.ku.edu

Igor Alvarado National Instruments igor.alvarado@ni.com

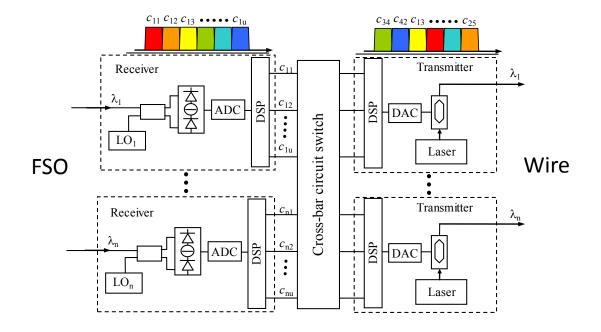


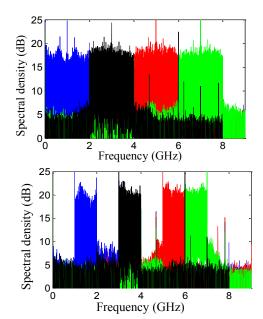
Workshop on Free Space Optical Networks – July 13-14, 2017

Motivations – Advanced Manufacturing

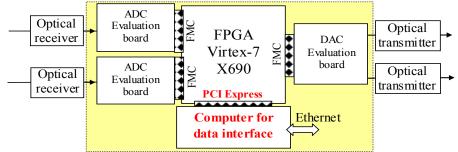
- Adoption of embedded systems and robotics that collectively work as part of a larger system, where each node works as an "agent" that handles different types of data (voltage, current, sound, image, ...) in multiple domains (temporal, spatial, spectral, ...)
 - Data intensive algorithms are being implemented (e.g., Machine Learning, Deep Learning) in the industrial environment, supported by the Cloud (remote)
- New technologies are being adopted, e.g. Virtual Reality-VR and Augmented Reality-AR, Industrial Internet of Things-IIoT
- Combination of high throughput data streaming between devices and systems, with a tight synchronization between them
 - The use of high-speed networks (10 GbE) and wireless communications (e.g., Wi-Fi) is becoming common on the factory floor
 - Ex. TB of video and images to support operators on the factory floor using VR and/or AR for maintenance and in need to consult technical manuals on site
 - Closed-loop responses in the milli-seconds (ms):
 - Ex. close loop control of robotic arm that responds to human command
 - Low-jitter (deterministic) communications:
 - Ex. Micro-second (us) jitter in communications between robots working in tandem and in synchronization
- **Electrical noise** (EMI) affects the communications/networking infrastructure on the factory floor and limits adoption of new technologies

FSO & Time-Sensitive Networks in Advanced Manufacturing

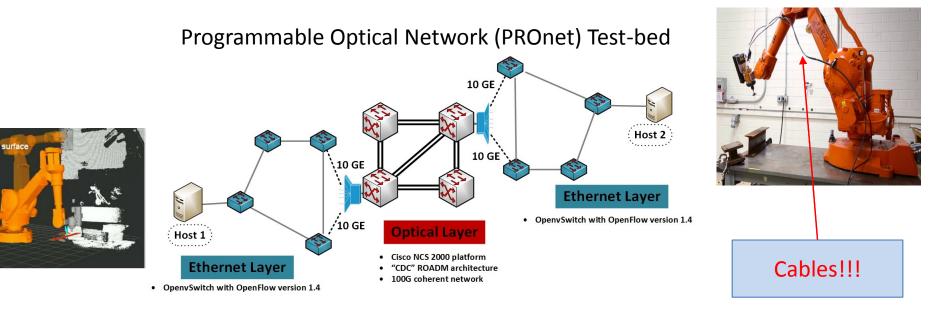


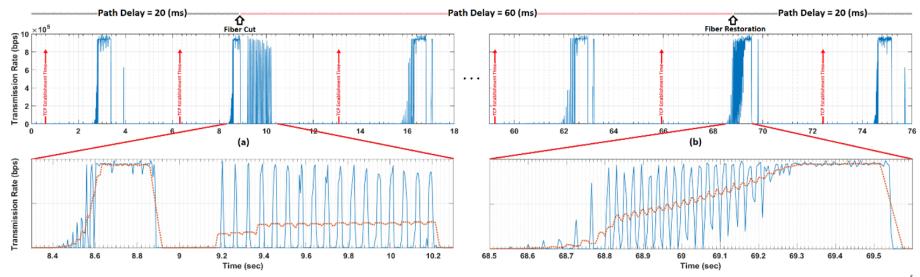

IEEE Standards and WGs on TSN

- Time Synchronization:
 - IEEE 802.1AS, IEEE 1588
- Traffic Scheduling:
 - IEEE 802.1Qbv
- System Configuration:
 - IEEE 802.1Qcc


- Copper and fiber are not sufficient for the rapid implementation of high-speed networks, while leveraging any existing Ethernet and/or Wi-Fi networks
- Free Space Optics (FSO)-assisted networks are becoming more and more appealing as a viable low-cost, high-rate alternative to copper and fiber
- Reliability and deterministic response are both critical in most of these implementations, requiring provisions for tight synchronization between devices and machines
- Typically, a FSO link quality depends on such factors as power, distance, and weather conditions for industrial implementation, deterministic response is also important

Deterministic E2E Latency through Digital Subcarrier Multiplexing





Reliability through Orchestration of Network Resources & Robots

TCP data transfer rate for 3 Kinect images (each about 60MB) as required by the Godel application 4/5

Challenges

- Unpredictable signal fading and multipath
- Robust beam steering
- FSO-wire seamless and time-sensitive data transfer
- Robot movements
- Obstacles
- Noise sources

This material is based upon work supported by the National Science Foundation under Grants No. CNS-1111329, CNS-1405405, CNS-1409849, ACI-1541461, and CNS-1531039.

5/5