Understanding and Approaching Fundamental Limits to Free Space Optical Communication through the Turbulent Atmosphere

Joseph M. Kahn¹, Aniceto Belmonte² and Karthik Choutagunta¹

1. E. L. Ginzton Laboratory, Electrical Engineering Department, Stanford University

2. Department of Signal Theory and Communications, Technical University of Catalonia

Stochastic Eigenmodes of Atmospheric Turbulence Channels

- Optimal transmit and receive basis functions.
- Subject to minimal degradation by turbulence.
- Minimize number of basis functions needed to capture a given fraction of energy in
 - Single-input multi-output (SIMO) transmission.
 - Multi-input multi-output (MIMO) transmission.
- Orthogonal mode set derived analytically using canonical turbulence model assuming
 - Transmitter knows only statistics of turbulence, i.e., received transverse coherence length.
 - Receiver knows statistics and can track instantaneous realization of turbulence.
- Can be mapped to/from single-mode waveguides by fundamentally lossless devices.
- Results
 - Near-field regime
 - Coherent detection
 - Scaled coherence length $\delta \approx r_0 / 2.62$
 - Reference beam radius ω_0
 - Signal-to-noise ratio $\gamma = P_{tot} / \sigma^2$

Modal Free-Space Transmission Systems

- Telescope optics not shown. Modal mux and demux may be in focal or pupil plane.
- Preference: WDM, PDM, SDM. Only one polarization and one wavelength shown.
- SIMO transmits M = 1 spatial mode; MIMO transmits M > 1 spatial modes. Transmit digital precoding (e.g., space-time coding) not shown.
- Receive *N* spatial modes, $N \ge M$. Use $M \times N$ processing instead of adaptive optics.
- Direct detection may place optical $M \times N$ before wavelength demux, depending on link coherence bandwidth, WDM signal bandwidth, and optical $M \times N$ device bandwidth.

Modal Multiplexers and Demultiplexers

- Desired properties
 - Mode-selective: one-to-one mapping between inputs/outputs and modes.
 - Fundamentally lossless.
 - Wide optical bandwidth.
 - Programmable.
- Options
 - Mode-selective photonic lantern: S. G. Leon-Saval et al, *Opt. Express* 22 (2014).
 All-fiber device based on adiabatic mode conversion and phase matching.
 Difficult to fabricate, difficult to scale to many modes, not programmable.
 - Multi-plane light converter: G. Labroille et al, Opt. Exp. 22 (2014).
 Free-space device based on sequence of 2D Fourier transforms and phase plates.
 Design involves a non-convex global optimization, which was solved by simulated annealing.
- We have developed an MPLC design method converging rapidly to global optimum.

Optical Multi-Input Multi-Output Signal Processing

- Desired properties
 - Can realize an arbitrary $M \times N$ matrix.
 - Fundamentally lossless.
 - Wide optical bandwidth.
 - Adaptive to track time-varying turbulence.
- Options
 - Triangular Mach-Zehnder interferometer array: D. A. B. Miller, *Photon. Res.* 1 (2013).
 Adaptation by "self-configuration" enabled by embedded photodetectors, but is likely to be slow.
 - Rectangular Mach-Zehnder interferometer array: W. R. Clements et al, Optica 3 (2016).
 Cannot adapt or learn unknown phase shifts by "self-configuation".
 - Multimode interferference coupler array: R. Tang et al, *Photon. Technol. Lett.* 29 (2017).
 Analogous to multi-plane light converter. Small footprint, tolerant to fabrication errors.
 Design involves a non-convex global optimization, which was solved by simulated annealing.

Summary

Stochastic eigenmodes of atmospheric turbulence channels

- Optimal modes to minimize degradation and minimize signal processing complexity for SIMO and MIMO links.
- We derived them analytically from a canonical turbulence model.

Modal free-space transmission systems

- May replace adaptive optics by digital or optical MIMO signal processing.
- May implement eigenmode transmission to optimize performance and minimize signal processing complexity.

Modal multiplexers and demultiplexers

- May realize: lossless, mode-selective, wide-bandwidth, programmable.
- We recently devised an efficient optimization method.

Optical multi-input multi-output signal processing

- May realize: arbitrary $M \times N$ matrix, lossless, wide-bandwidth, adaptive.
- May be possible to process multiple WDM channels in some systems.
- We are working on efficient optimization methods.