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Stochastic Eigenmodes of Atmospheric Turbulence Channels 
• Optimal transmit and receive basis functions. 
• Subject to minimal degradation by turbulence. 
• Minimize number of basis functions needed to capture a given fraction of energy in 

– Single-input multi-output (SIMO) transmission. 
– Multi-input multi-output (MIMO) transmission. 

• Orthogonal mode set derived analytically using canonical turbulence model assuming 
– Transmitter knows only statistics of turbulence, i.e., received transverse coherence length. 
– Receiver knows statistics and can track instantaneous realization of turbulence. 

• Can be mapped to/from single-mode waveguides by fundamentally lossless devices. 

• Results 
– Near-field regime 
– Coherent detection 
– Scaled coherence length  δ ≈ r0 / 2.62 
– Reference beam radius  ω0   
– Signal-to-noise ratio γ = Ptot / σ2 
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Modal Free-Space Transmission Systems 
• Telescope optics not shown. Modal mux and demux may be in focal or pupil plane. 

• Preference: WDM, PDM, SDM. Only one polarization and one wavelength shown. 

• SIMO transmits M = 1 spatial mode; MIMO transmits M > 1 spatial modes.  
Transmit digital precoding (e.g., space-time coding) not shown. 

• Receive N spatial modes, N ≥ M. Use M × N processing instead of adaptive optics. 

• Direct detection may place optical M × N before wavelength demux, depending on link 
coherence bandwidth, WDM signal bandwidth, and optical M × N device bandwidth. 
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Modal Multiplexers and Demultiplexers 
• Desired properties 

– Mode-selective: one-to-one mapping between inputs/outputs and modes. 
– Fundamentally lossless. 
– Wide optical bandwidth. 
– Programmable. 

• Options 
– Mode-selective photonic lantern: S. G. Leon-Saval et al, Opt. Express 22 (2014).  

All-fiber device based on adiabatic mode conversion and phase matching. 
Difficult to fabricate, difficult to scale to many modes, not programmable. 

– Multi-plane light converter: G. Labroille et al, Opt. Exp. 22 (2014). 
Free-space device based on sequence of 2D Fourier transforms and phase plates. 
Design involves a non-convex global optimization, which was solved by simulated annealing. 

• We have developed an MPLC design method converging rapidly to global optimum. 

 

4 

Input OutputLayer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Tr
an

sf
or

m
at

io
n 

Er
ro

r

Optimization Step

4 spatial modes, 9 phase plates



Optical Multi-Input Multi-Output Signal Processing 
• Desired properties 

– Can realize an arbitrary M × N matrix. 
– Fundamentally lossless. 
– Wide optical bandwidth. 
– Adaptive to track time-varying turbulence. 

• Options 
– Triangular Mach-Zehnder interferometer array: D. A. B. Miller, Photon. Res. 1 (2013). 

Adaptation by “self-configuration” enabled by embedded photodetectors, but is likely to be slow. 
– Rectangular Mach-Zehnder interferometer array: W. R. Clements et al, Optica 3 (2016). 

Cannot adapt or learn unknown phase shifts by “self-configuation”. 
– Multimode interferference coupler array: R. Tang et al, Photon. Technol. Lett. 29 (2017). 

Analogous to multi-plane light converter. Small footprint, tolerant to fabrication errors. 
Design involves a non-convex global optimization, which was solved by simulated annealing. 

• We are working on an efficient MMI array design method. 
It does not yet reliably converge to global optimum. 
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Summary 

Stochastic eigenmodes of atmospheric turbulence channels 
• Optimal modes to minimize degradation and minimize signal processing complexity 

for SIMO and MIMO links. 

• We derived them analytically from a canonical turbulence model. 

Modal free-space transmission systems 
• May replace adaptive optics by digital or optical MIMO signal processing. 

• May implement eigenmode transmission to optimize performance and minimize 
signal processing complexity. 

Modal multiplexers and demultiplexers 
• May realize: lossless, mode-selective, wide-bandwidth, programmable.  

• We recently devised an efficient optimization method. 

Optical multi-input multi-output signal processing 
• May realize: arbitrary M × N matrix, lossless, wide-bandwidth, adaptive. 

• May be possible to process multiple WDM channels in some systems. 

• We are working on efficient optimization methods. 
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