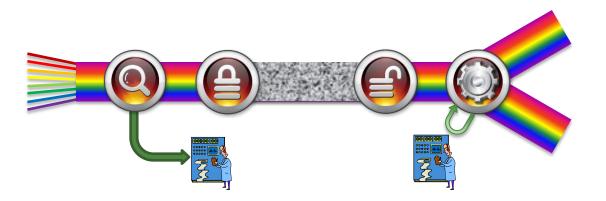


Digital Optical Processing and Latency Challenges

2017 NSF Workshop on Free Space Optical Networks

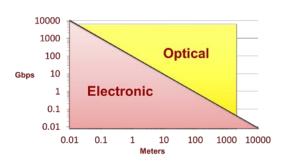
Joe Touch – USC/ISI

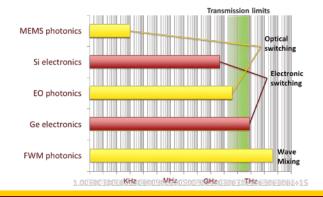

7/5/2017 1 Information Sciences Institute

Copyright USC/ISI. All rights reserved.

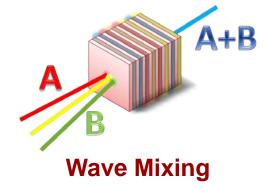
Digital Optical Processing

- Forwarding improves network flexibility
- <u>Crypto</u> enables cross-channel entropy mixing
- Filtering selects from data to big to store





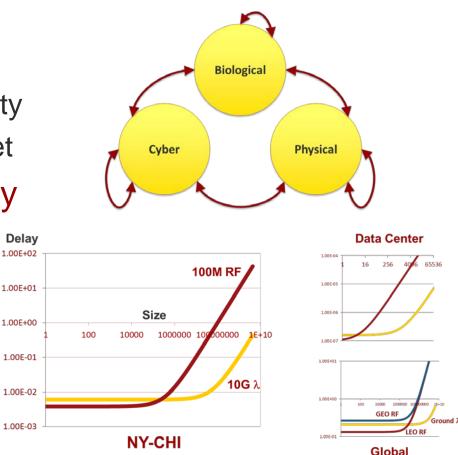
- Focus on optics
 - BW*dist > 100 Gb-m/s requires optics
- Unify computation and communication
 - One encoding for both
 - Avoid OEO and OO'O
- Leverage native properties
 - Optical mixing to compute
 - Switching to program


www.isi.edu/otm

Copyright USC/ISI. All rights reserved.

Key OTM Observations

- Processing requirements
 - Supports a field
 - Recirculates
 - Semantics-preserving
- Encoding requirements
 - High-density
 - Regenerates



7/5/2017 4 Information Sciences Institute

- Messages have a budget
 - Delay is a message property
 - Interaction defines a budget
- Multiple sources of latency
 - Generation, transmission, processing, sharing, grouping
- Mitigations are complex
 - Some interact
 - Others require context

USC Viterbi School of Engineering

www.latency.org

Copyright USC/ISI. All rights reserved.

7/5/2017 5 Information Sciences Institute

Integrated Solutions

- The challenge of nonlinear composition

 OTM requires nonlinearities to create a field
 Latency combines in nonlinear ways
- Both require a multifaceted approach
 - Transmit, compute, and regenerate while preserving encoding semantics
 - Use application context to reduce latency

Combining aspects of many dimensions and layers

