

Progress in Free Space Optical Networks

Dr. Linda Thomas Naval Research Laboratory, Code 8123 linda.thomas@nrl.navy.mil

Mr. Brian Adamson, Mr. Joe Macker Naval Research Laboratory, Code 5522

12 July 2017

- Status of Lasercom/Free Space Optics Technology
- Opportunities to advance FSO Networks

Free-Space Optical Communications

- Operate outside traditional RF frequency bands in optical spectrum
 - Leverage COTS telecom components
 - Frequency allocation requests not required above 3000 GHz at this time CONUS
- Augment RF Communications
 - Maintain high joint RF/FSO availability and throughput
- Provide fiber-like data rates
 - 10M/100M/1G/10G/100G+
- Directional Beams
 - Avoid cosite interference; no sidelobes
 - LPI/LPD
- Compact form factors achievable

Where have we been? Selected S&T Investments in Free Space Optical Comms

U.S.NAVAL

RESEARCH

DARPA FOENEX Phase 2 experiment and demonstration

Attribute	Improve Reliability/ Availability	Mitigate Turbulence	Mitigate Clouds	Mitigate Blockage	Mitigate Multipath
Forward error correction (FEC)	~	1	2.5		
Mobile Ad-Hoc Network (MANET)	\checkmark		\checkmark	~	
Layer 2 retransmission		~			
Deep queue replay				~	
RF adaptive equalization				-	~
Free Space Optical/RF hybrid link			~		

Phase 2 testing (2012)

- Exercise network:
 - Packet Error Rate.
 - Network Availability.
 - Link Availability.

FOENEX Phase 2 experimentation fully characterized hybrid network capabilities and performance in a 4-node network.

Ongoing NRL FSO Developments

OSD/DoD CIO Spectrum Access R&D Project:
Automated Tactical Optical Line of sight Links

U.S. NAVAL RESEARCH

- Emphasis on tactical network integration with FSO as an augmentation to existing RF links
- Spiral development of the TALON FSO system
- OSD/DoD CIO Spectrum Access R&D Project: Free Space Terabyte Offload
 - High rate offload from air platforms
 - Requires assured data delivery
- ONR Lasercom for Fractionated Small Satellite Architectures
 - Understand trades between closing links to SWaP-challenged, dynamic platforms
- NRL, AFRL, ARL & SMDC awarded Applied Research for the Advancement of S&T Priorities (ARAP) for the Defense Optical Channel Program
 - Emphasis on advanced lasercom waveforms and networking

NRL compact ship FSO, 2008

NRL Chesapeake Bay Detachment, MD

NRL Lasercom Test Facility: Shore and ship testing

A General Challenge of Networked Wireless Systems

Building Wireless Networks for This

Just Cutting The Wires

THE ERRATIC FEEDBACK FROM A RANDOMLY-VARYING WIRELESS SIGNAL (AN MAKE YOU CRAZY.

xkdc.com

Specific Theoretical Challenges of Networked Wireless Systems

U.S.NAVAL RESEARCH

ABORATORY

A Layered View of Collaborative Mobile Network Systems

Applications/ Middleware	App App App App Services (location, discovery), Group communications, collaboration, message buses	Coope
Transport		ss Song Qua
Networking	Robust transport and adaptive network layer: addressing, dynamic routing, gatewaying, multicast	Layer Security on/Self-O gestion C gestion C lity of Se
Include FSO M and discovery/to	SSUe rganiza ontrol rvice	
Wireless Technologies	Power Control, RF Waveforms	s: ation
		★

U.S.NAVAL RESEARCH LABORATORY

Layered Wireless Network System and Modeling Challenges

In a wireless network, none of these functions/layers are independent

Ongoing Applied Research Areas

- **Distributed control and self-organization mechanisms** to support autonomous/semi-autonomous wireless network systems
 - FSO requires a robust discovery subsystem
- **Resilient applications, middleware, and data transport protocols** in the context of challenging tactical edge communication networks and missions
 - Elastic and resilient data transport appropriate for hybrid FSO network use
 - Tighter network-link layer designs (e.g., DLEP) for dynamic router response to intermittent connectivity (e.g., optical fades) and dynamic and heterogeneous data rates
- Scenario-driven modeling and cross-layered dynamic network experimentation to aid analyses and performance assurance in realistic environments
 - Hybrid architectures where FSO augments RF links with traffic prioritization. Need to model this early on in more realistic heterogeneous and dynamic environments
 - Dynamic physical topology management with FSO capabilities
- **Evolving applications of recent theoretical advances** (e.g., complex network theory, control theory, network science) for analysis, optimization, and design of dynamic wireless network systems.
 - Unique FSO characteristics are dramatically different from standard RF networks
 - New opportunities for research in dynamic topology control and network management

IETF MANET Standards Evolution: "Building Block" Components

MANET Start ~1997-2007

- 2 Experimental Proactive Protocols
- 2 Exp Reactive

MANET Reboot

2005-2016

- 1 standard Proactive
- 1 standard Reactive

Building Block Approach

2006-2011

- Packet format
- Neighbor discovery
- Protocols
- Generalized multicast

Extensions 2007-current

- Time
- Security
- Protocol Improvements

Today 2010-current

- Radio/Router Interface
- Multicast building block approach

These building blocks can be adapted and applied to new links (e.g., FSO) and environments (e.g., air, ground, space)

Cross-Layer Mobile Wireless Network Modeling Capability

U.S. NAVAL RESEARCH

Free Space Optical Network Challenges

- Adapt FSO physical layer behavior for the network
 - Burst fades
 - Scintillation & turbulence
 - Beam wander
- Latency
 - Meet mission-level requirements
- Discovery
 - Dynamic networks (space, mobile, etc)
- Topology management

- Network Emulation
 - Tools for end-to-end emulation
 - Consider interactions from physical later to transport layer
 - Heterogeneous networks with RF
- Enable modularity with standardized interfaces
 - Leverage IETF network standards, among others
- Enable Interoperability
 - Commonality
 - Interchangeability
 - Compatibility

U.S. NAVAL RESEARCH LABORATORY

FSO Challenges drive many research opportunities

Thank you!

Dr. Linda Thomas; <u>linda.thomas@nrl.navy.mil</u> Mr. Joseph Macker; <u>joseph.macker@nrl.navy.mil</u> Mr. Brian Adamson; <u>brian.adamson@nrl.navy.mil</u>

Some of the Present Emulation Modeling Subsystems in Use

Common Open Research Emulator (CORE):

- Instantiates and orchestrates node virtualization
- Manages network and application services
- Provides real software stacks for app and network layers

NRL Network Modeling Framework (NMF):

- Construction and execution of complex scenarios
- Standard network description capability
- Mobility definition and control
- Supports event-based control and status to other processes
- Related toolsets (e.g., terrain modeling, externalities).

Extendable Mobile Ad-hoc Network Emulator (EMANE):

- Supports lower layer modeling MAC/PHY
- Canonical (CSMA, RFpipe) and actual DoD radio models
- Works with CORE and NMF in real-time via interface APIs and common module support developed

Can be used at multiple scales and fidelity:

- multi-core laptop
- high-end, multiple CPU systems
- distributed computing lab
- hybrid virtualization/real system testbeds (e.g., Android, UASes)
- Simplified RF models for scaling

Example Connectivity Tradeoffs

System modeling can help answer these and other questions.