Silicon Photonics for Coherent Applications

C. Doerr

© 2017 Acacia Communications, Inc.

Silicon photonics

SiPh

Boule

12" (300 mm) wafer

Silicon on insulator (SOI) wafe

SiPh family

Band structure for Si

Electro-refraction/absorption in Si

Refraction
$$\Delta n_r = -8.8 \times 10^{-22} N_e - 8.5 \times 10^{-18} N_h^{0.8}$$

Absorption
$$\Delta n_i = 1.05 \times 10^{-22} N_e + 7.4 \times 10^{-23} N_h$$

 N_e = free electron density in cm⁻³ N_h = free hole density in cm⁻³

Electro-optic modulation in Si/Ge

Carrier injection

Causes both phase and magnitude change (can be used as a VOA) Slow

Fast Weak (typ 2 V-cm) Metal-oxide-semiconductor

Strong (typ 0.2 V-cm) Fast (but high capacitance) Lossy

No Pockels effect or QCSE exist in Si

Material transparency

Photodetectors in Si/Ge

Main advantage of silicon photonics

 Ability to integrate many elements with very high yield

- Not
 - Die cost savings
 - Monolithic CMOS integration

Why SiPh high yield compared to InP?

4 different atom types, dry growth

Single atom type, wet growth

InP – SiPh comparison

InP

- Expensive material
 - In is scarce
- Medium yield
 - W.g. material from epitaxy
- Small footprint
 - High index contrast in 1D
- Efficient laser
- No good native oxide
- Low dark current
- Small wafers
 - Brittle material
- Modulator temp. sensitive
- Narrow wavelength range
- Not flip-chip-able

SiPh

- Cheap material
 - 27% Earth's crust is Si
- High yield
 - W.g. material from original boule
- Extremely small footprint
 - High index contrast in 2D
- No native laser
- Excellent native oxide
- Medium dark current
- Large wafers
 - Strong material
- Modulator temp. insens.
- Large wavelength range
- Flip-chip-able

12 © 2017 Acacia Communications, Inc. — CONFIDENTIAL AND PROPRIETARY —

→ |V| increasing

Τ

Coherent systems

Advanced modulation formats for optical communication

Advanced modulation format Tx

Coherent reception

Benefits of coherent

- High spectral efficiency
- High sensitivity
- Electronic compensation of impairments
- No Rx optical filter required
- Low cost per bit

Coherent module evolution

CMOS node size reduction

Semiconductor manufacturing processes 10 µm - 1971 6 µm - 1974 3 µm - 1977 1.5 µm - 1982 1 µm - 1985 800 nm - 1989 600 nm - 1994 350 nm - 1995 250 nm - 1997 180 nm - 1999 130 nm - 2001 90 nm - 2004 65 nm - 2006 45 nm - 2008 32 nm - 2010 22 nm - 2012 14 nm - 2014 10 nm - 2016 7 nm - 2018 5 nm - 2020

Coherent optics

Coherent optics evolution

Early advanced format modulators

R. Griffin, et al., paper FP6, OFC 2003.

GaAs

T. Kawanishi, et al., paper OWH5, OFC 2007.

Early coherent receivers

1 pol., 1 quad.

T. L. Koch, et al., Electron. Lett., vol. 25, pp. 1621-1622, 1989.

Also, H. Takeuchi, et al., IEEE Photon. Tech. Lett., vol. 1, pp. 398-400, 1989.

2 pol., 1 quad.

R. J. Deri, et al., IEEE Photon. Tech. Lett., p. 1238, 1992.

1 pol., 2 quad.

H.-G. Bach, et al., OFC, OMK5, 2009.

PLC coherent receiver

Coherent optics evolution

InP advanced format modulator

N. Kikuchi, ECOC, 10.3.1, 2007.

Coherent optics evolution

SiPh advanced format modulator

P. Dong, L. Chen, et al., Opt. Exp., 2012.

SiPh coherent receivers

C. R. Doerr, et al., J. Lightwave Tech., vol. 28, pp. 520-525, 2010. C. R. Doerr, et al., IEEE PTL, 2011.

Single-chip coherent transceiver

Power consumption = 4.3 W

Acacia coherent modules using SiPh

100G MSA

100G CFP

200G CFP2-DCO

Example: Rx loss

fiber to PD responsivity, A/W in dB

Example: Rx common mode rejection ratio

worst Rx CMRR per PIC, in dB scale, over C-band over 4 pairs of PDs

• CMRR determines the capability for handling multichannel Rx without demux.

• Mean: 27 dB

Si modulator with linear driver: improved ER and low chirp

Measured performance (30 Gbaud)

Dual-carrier MSA: wavelength, temperature, and reach at 2 x 100G

Dual-carrier MSA: variable data rate of 2x100G, 2x150G, 2x200G

Results of two lanes are super-imposed.

370-nm bandwidth demonstration

Tunable

laser

© 2017 Acacia Communications, IReceived Rower (dBm) 38

Received power at 10⁻³ BER

39 © 2017 Acacia Communications, Inc. — CONFIDENTIAL AND PROPRIETARY —

Reduced cost packaging

BGA schematic

ia Communications, Inc. — CONFIDENTIAL AND PROPRIETARY —

21.6mm x 13.0mm369 balls, 0.8-mm pitch3.5mm height with lid

Lower cost

Package

- Single-step manufacturing process
- Fewer parts
- Basically a small PCB
- Assembly of package
 - Automated passives placement
 - Automated die bonding
- Assembly into module
 - Treated as regular SMT component

Higher speed

- •No wire bonds
- Copper, rather than tungsten, traces

Smaller footprint

No package pins

Smaller footprint for both package and PCB traces

Routing to match ASIC is done inside substrate, so PCB traces can be very short

Improved heat dissipation

• Heat flows directly from die backside to lid

ASIC+PIC co-packaging

- Very high bandwidth connections
 - High speed analog signals never leave the package
- Smaller footprint
- Lower cost

Future evolution of coherent transceivers

240-Gb/s BGA testing

64-Gbaud testing

16 QAM, single-pol 200-Gb/s

BGA PIC SMT on PCB

Imaging applications using SiPh coherent technology

Optical coherence tomography

In collaboration with MIT and ThorLabs

Types of coherent detection

OCT imaging of 1 m³

- Scan pattern: 1000x1000 A-scans/volume
- Scan volume (~200cm depth, ~100cm horizontal, ~100cm vertical)
- Edge of chess board to back of
- 0.4TB/volume, 200,000 points/A-line

Meter range OCT for 3D documentation

Lidar

- Pulsed time-of-flight (TOF)
 - Simple
 - All today's LiDAR products employ TOF
 - Requires APDs
 - Most use 905 nm (1550nm is eye safe)
- Frequency modulated continuous wave (FMCW) (i.e., coherent)
 - More sensitive
 - Can use regular photodiodes
 - Gives more information (phase, Doppler shift)

Ref: Amann, Markus-Christian "Laser ranging: a crtl review of usual techniques for distance measurement." Optical Eng 40.1 (2001): 10-19.

Phased-array beam steering using silicon photonics

J. Sun, et al., Adv. Photon. for Comm., 2014.

K Van Acoleyen, et al., Opt. Lett, 2009.

Conclusion

Conclusion

 SiPh allows for very high complexity with high yield and low-cost packaging

 Coherent optics is a killer application for SiPh

Thank you

Acknowledgments: B. Mikkelsen, E. Swanson, M. Givhechi, C. Rasmussen, L. Chen, R. Aroca, S. Azemati, J. Heanue, G. Ali, G. McBrien, Li Chen, B. Guan, H. Zhang, X. Zhang, T. Nielsen, H. Mezghani, M. Mihnev, N. Sauer, C. Yung, M. Xu, J. Fujimoto, B.

InP & SiPh modulator comparison

InP

InP IQ modulator

65

InP & SiPh modulator comparison

